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Abstract--The cooling problem of the hot internal pipe flow has been investigated. Simultaneous conduc- 
tion, and radiation in the fully developed inner pipe flow were considered with prescribed azimuthally 
varying convective heat loss at the pipe wall. A complex, nonlinear integro-differential radiative transfer 
equation was solved by the discrete ordinates method (or called SN method). The energy equation was 
solved by control volume based finite difference technique. A parametric study was performed by varying 
the conduction-to-radiation parameter, optical thickness, and scattering albedo. The results have shown 
that initially the radiatively active medium could be more efficiently cooled down compared with the cases 
otherwise. But even for the case with dominant radiation, as the medium temperature was lowered, the 

contribution of conduction began to exceed radiation. Copyright © 1996 Elsevier Science Ltd. 

1. INTRODUCTION 

Forced convection combined with radiation in a ther- 
mally developing pipe flow is a long-standing topic in 
the high temperature heat transfer problem due to a 
number of diverse engineering applications such as 
heat exchangers in industry, solar energy collection 
systems, cooling processes in nuclear reactor, waste 
heat extraction from flue gases, and widely used manu- 
facture of optical fiber performs called Modified 
Chemical Vapor Deposition [1]. In some cases the 
particle laden flow exists and scattering is involved. 
Therefore a number of studies have been performed 
under the various circumstances in the past several 
decades. The interaction of forced convection with 
axisymmetric radiation in a thermal entrance region 
of circular pipe has been investigated by many 
researchers [2-8]. But only a few engineers have exam- 
ined the forced convection combined with axi- 
symmetric radiation including the axial variation of 
radiative heat transfer [9-11]. All of these researches 
have been carried out under the two types of cir- 
cumferential boundary conditions such as constant 
temperature or constant heat flux at the wall and 
restricted to axisymmetric situation. 

Usually in high temperature heat transfer device the 
role of radiation is regarded as quite important, but 
it is a formidable problem to find exact analytical 
solutions due to the highly nonlinear integro-differ- 
ential radiative transfer equation. Therefore, an 
efficient numerical tool dealing with multi-dimen- 
sional radiative heat transfer is in strong demand to 
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analyse variously-coupled thermal problems. The dis- 
crete ordinates method, which is adopted in this study, 
has recently received more attention because of its 
efficient integration with other finite difference trans- 
port equations. This method, conceptually, belongs to 
a family of flux models, but corrects lack of couplings 
among the directional intensities present in some of 
conventional flux models. In the discrete ordinates 
method, the radiative transfer equation is solved only 
in a finite number of discrete directions. The principal 
application of discrete ordinates method has been in 
the field of the neutron transport [12]. The method 
has subsequently been applied to numerous radiative 
problems [13-16] with remarkable accuracy, and 
applied to nonaxisymmetric cylindrical enclosure [17]. 

As mentioned before, the pipe flow with axi- 
symmetric radiation has been examined by many 
researchers. However, when the pipe is laid in 
crossflow of cold environment, the internal heat trans- 
fer asymmetrically occurs between internal flow and 
pipe wall of which outer wall is being cooled down by 
azimuthaUy varying outer-convection. 

The efforts of present study are directed at solving 
this type of thermally developing pipe flow with non- 
axisymmetric radiation by the discrete ordinates 
method. In order to focus on the nonaxisymmetric 
radiation the fluid flow is just simplified by assuming 
the hydrodynamically fully developed flow without 
solving the Navier-Stokes equation. Inside the pipe 
the medium thermal energy is transferred by con- 
duction and radiation to the cold inner pipe-wall as 
the internal fluid flows downstream. Heat is removed 
at the outer pipe-wall by the azimuthally varying heat 
transfer coefficients or Nusselt numbers, Nu~(O) 
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NOMENCLATURE 

C thermal conductivity ratio ()~ 
1 intensity 
I b block body intensity 2 
N conduction to radiation parameter 
n refractive index ~o 
Nu Nusselt number r,, 
Pe Peclet number ~ 
q heat flux 
r space coordinate in radial direction ,~,, 

depicted in Fig. 1 
Re Reynolds number 
T temperature 
u velocity 
z space coordinate in axial direction 

depicted in Fig. I 

Greek symbols 
thermal diffusivity 

fl extinction coefficient[m-~] 
~/, p, ¢ directional cosines defined in 

equation (10) 
0 space coordinate in azimuthal 

direction depicted in Fig. 1 

directional coordinate for polar angle 
depicted in Fig. 1 
thermal conductivity 
Stefan-Boltzmann constant 
scattering coefficient 
optical radius 
directional coordinate for azimuthal 
angle depicted in Fig. 1 
scattering albedo. 

Subscripts and superscripts 
C conduction 
o reference value 
R radiation 
r radial direction 
T total 
w wall 
0 azimuthal direction 
J c r o s s f l o w  

" real quantity 
mean quantity. 

which is experimentally predefined. The results are 
then presented by considering the effects of various 
parameters such as the conduction-to-radiation par- 
ameter, optical thickness, and scattering albedo. 

2. ANALYSIS 

As shown in Fig. 1, there is an external cross-flow 
over the pipe, which also provides the experimentally 
determined external Nusselt number variation. Inside 
the pipe radiatively active gray medium flows in and 
out with fully developed velocity. The present study, 
thus, deals with the interaction of asymmetric radi- 
ation with conduction for a given hydrodynamically 
fully developed flow without solving the momentum 
equation. 

The radiatively active hot medium entering through 
one end begins to be thermally developed by internal 
convection/conduction and radiation in streamwise. 
radial and azimuthal directions. However, Sparrow 
and Cess [18] found that the streamwise variation of 
radiation can be negligible under the following con- 
ditions. 

16~rnZ 7~;],~/3112 >> 1. (1) 

In this study all the flow parameters are chosen to 
meet the above condition. Consequently, the radiation 
is considered to be varied only in radial and azimuthal 
directions, as will be shown in the following. The plot 

for the Nusselt numbers, Nu~(O),  in Fig. 1 represents 
the azimuthally varying heat transfer coefficient which 
is applied to the circumferential boundary condition 
at the outer pipe wall. They are taken from the exper- 
imental data as a function of Reynolds number, 
Re~[19]. 

The dimensionless form of energy equation can be 
written as 

? T  { l r O f O T •  1 0 2 T ]  

(2) 

by using the following dimensionless variables and 
parameters : 

r =  f.'i, z = 22/~,,Pe u = ~/~ a = ~ d , ' t / n f  o 

T = T/7~,,1 I = [/[bo q = qfo/2T,, [bo = a n 2 ~ / ~  

N = 213/4an z:Fi~ Vo = fifo e)o = ao/fl Pe  = 2foa/~ 

(3) 

where the hat represents the dimensional variable. The 
inlet and boundary conditions for the energy equation 
with infinitely thin pipe wall, that means solid con- 
duction being neglected at pipe wall and the same 
temperatures of the inner and outer pipe surfaces, are 
given as follows : 
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0 
Fig. 1. Schematic of the problem and crossflow local Nusselt number for the circumferential boundary 

condition. 

T = 1 at z = 0 finite value at r = 0 

q~l, c ~ C 
= q r l , + q r l w = ~ N u ~ ( T w - T ~ )  a t r =  1 

(4) 

where the superscripts T, C, and R denote the total, 
conductive, and radiative term respectively. The Nus- 
selt number is taken from the experimental data [19] 
as shown in Fig. 1. The thermal conductivity ratio, 
C = 2~/2, and dimensionless crossflow temperature, 
T~, are each set to 0.5. In the above boundary con- 
dition at r = 1, the periodic values are imposed on the 
Nusselt number following the variations in azimuthal 
direction in Fig. 1. The nondimensional form of radi- 
ative and conductive heat fluxes in r and 0 directions 
can be found to be 

c - - ~ /  
~ q T ~ = I q c l + ~ q ~ =  
(q0TJ (qo J (qgJ I ~T 

The mixed mean temperature and the azimuthally 
averaged pipe wall temperature are defined at each 
cross-section as follows. 

f _ STu dA Tw = ITw d0 (6) 
~u dA 2zr 

In order to estimate the rate of cooling of the medium 
along the streamwise direction, the azimuthally aver- 
aged Nusselt number is defined as 

Nu x = Nu c + Nu R = S(qC[~ +q~l,,) dO 
n (7"- 1~,,) (7) 

Based on the simplification aforementioned, the 
dimensionless form of the radiative transfer equation, 
which represents the balance of radiative energy pass- 
ing in a specified direction through a small differential 
volume in an emitting, absorbing and scattering gray 
medium, can be cast as 

1~_# ~(r/) 1 ~(r/I) t/~3I~ 

% ( r  Or r 3~0n + r ~ J  

coo fn I '  d~2' (8) +I=(1-COo)T4+4nn ,=4~ 

where the primed values represent the incoming direc- 
tion and the corresponding direction cosines are 

/~ = sin On cos ~0n q = sin On sin ~0 n ff = cos On. 

(9) 

In the following study only isotropic scattering is con- 
sidered. Boundary conditions for the radiative trans- 
fer equation at the centre axis and the inner pipe wall 
assumed to be black body are respectively given by 

I = I '  w i t h ~ = - ~ ' ( f o r # > 0 )  a t r = 0  

I = T 4 w ( f o r # < 0 )  a t r = l .  (10) 

In this study the radiative transfer equation (8) is 
solved by the discrete ordinates method. Since all the 
details about this method are well described in the 
previous paper [16], they are not repeated here for its 
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brevity. By this method the intensity is only solved in 
a finite number of  directions spanning a full range 
of  the total solid angle, 4r~. Preliminary evaluations 
revealed that $4 approximation is quite adequate in 
the present work, for no measurable gain was obtained 
in accuracy by higher order approximations such as 
$6 and $8. Therefore $4 approximation is used in this 
study. The ordinate directions and quadratic weight- 
ing factors adopted here are also explained in ref. [16]. 
The energy equation (2) is discretized by the finite 
difference technique based on the control volume 
approach and solved by tridiagonal-matrix algorithm. 
To validate its symmetry about the pipe mid-plane the 
full cross-section is solved from 0 = 0 to 27r. The 
iteration is repeated until convergence is accom- 
plished. A 17 x 56 uniform grid system is adopted at 
each cross section, since a finer grid did not yield much 
difference. The convergence is monitored through 
temperature difference between two iteration steps. 

3. RESULTS AND DISCUSSION 

To investigate the effect of  radiation on the ther- 
mally developing pipe flow with prescribed cir- 
cumferentially varying convective heat loss, the 
numerical calculation has been performed for no radi- 
ation and four combinations of  such three radiation 
involving parameters as the conduction-to-radiation 
parameter, N, the optical radius, T,, and scattering 
albedo, eJ)o; the first one for N = 0.1, % = 1, and 
~,,~o = 0.1 ; the second one for N = 0.02, ro = 1, and 
coo = 0.1 to seek the effect of  conduction-to-radiation 
parameter and represented as the dashed line; the 
third one for N = 0.1, z,, = 5 and co,, = 0.1 to examine 
the effect of  optical radius ; the fourth one for N = 0.1, 
r,, = 1 and co,, = 0.8 to investigate the effect of  scat- 
tering albedo. 

Figure 2 shows the isotherm variation for half 
domain as the flow is being developed along down- 
stream. The external flow direction over the pipe is 
from left to right as shown in the figure. Owing to this 
crossline, the temperature distribution is observed to 
be nonaxisymmetric and the hot  medium always rap- 
idly cools down near stagnation point as seen in all 
pipe cross-sections, which leads to a steep temperature 
gradient therein. The high temperature zone is at the 
inner core. As the hot medium flows through the pipe, 
eventually the medium temperature reaches that of  
the environment. From then on no further heat loss 
to outside is to occur. 

The effect of  conduction-to-radiation parameter, N, 
can be figured out by comparing the cases (a) and (b). 
Since the radiation plays a more significant role as N 
decreases, the fluid more rapidly cools down due to 
its salient deep-penetrating effect of  radiation. Conse- 
quently, the medium temperature becomes more uni- 
form for smaller N and thus the conductive heat flux 
would be smaller. By comparison of  case (a) with (c) 
in Fig. 2, the effect of  optical radius ro can be exam- 
ined. It is seen that the rate of  cooling of  the medium 

becomes faster as the optical radius increases from 1 
to 5. This results from the fact that the more radi- 
atively active the flow medium, the larger its total 
emission becomes. The effect of  scattering is illustrated 
in Fig. 2(d). The scattering of  the medium reduces the 
capability of  emitting energy and thus less energy is 
directed towards the wall boundary. This results in 
diminishing the cooling rate of  the medium when ~,, 
is increased from 0.1 to 0.8. 

The detailed cooling history of  the medium is 
graphically represented in Fig. 3, in which the left- 
hand side one represents the wall temperature vari- 
ation as the azimuthal angle increases from 0 to n. 
The radial temperature distribution in the range of  
0 < r < i is plotted for two azimuthal angles (0 = 0 
and n) on the right-hand side in the figure. By com- 
paring the contours at z = 1.601, it is noticeable that 
the whole medium for the case (b) is being cooled 
faster than the others. But at near entrance region 
(z = 0.03 or 0.186) the temperature gradient at the 
pipe wall for the case (b) is found to be rather small. 
This can be explained as follows. If the conduction is 
dominant  over the radiation, very steep temperature 
gradient is developed near the pipe wall. Therefore 
the medium is mainly cooled by the conduction mode. 
Reversely, when the radiation becomes dominant,  the 
temperature gradient at the pipe wall is small. There- 
fore, the conductive heat transfer to the wall is small. 
However, the whole medium is primarily cooled down 
by the direct emission of  the medium to the wall. In 
other words the emission of  the medium is the pri- 
marily factor to determine the cooling rate, once the 
radiation is involved. As a result of  this composite 
phenomenon,  the temperature at the wall is higher for 
radiatively active medium in the entrance region. 

To quantify the cooling rate along the streamwise 
direction of  the pipe, the mixed mean temperature and 
the averaged wall temperature defined in equation (6) 
are plotted in Fig. 4. The streamwise development 
of  the averaged temperatures is slowest for the case 
without radiation. Especially the mixed mean tem- 
perature contour shows that the medium cools down 
faster as the radiation becomes more dominant. How- 
ever, the averaged wall temperature has inverse tend- 
ency during the initial thermally developing period 
due to the strong influence of  conduction near the 
wall. Consequently, there seems an inverse correlation 
between two types of  temperature curves from the 
point view of medium cooling. As the flow cools down 
more the conduction incurred by temperature gradi- 
ent is smaller and the inverse nature of  those two 
averaged temperatures disappears. In all cases the 
medium temperature finally converges to the sur- 
rounding temperature 0.5 for z > 3. 

In Fig. 5 the local heat fluxes transferred to the pipe 
wall are represented at four axial positions (z = 0.03, 
0.186, 0.705 and 1.601) on the logarithmic scale vs 
the azimuthal angle. In overall, the conductive and 
radiative heat transfers are of  the same order. The 
heat loss reaches a maximum at the stagnation point 
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Fig. 3. Azimuthal variation of the wall temperature and radial temperature variation at 0 = 0 and ~. 
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Fig. 4. Streamwise variation of mixed mean temperature and azimuthally averaged wall temperature. 

0 = 0 and then decreases as 0 increases tbllowing the 
crossflow Nusselt number profile. In the rear wake 
region it again slightly increases. For  both cases, (b) 
(smaller conduction-to-radiation parameter) and (c) 
(larger optical radius), the radiative heat flux is 
observed to be relatively bigger than the conductive 
heat flux in the upstream. Therefore, the more radi- 
atively active the medium, the more heat loss there 

occurs at the pipe wall. After some distance from 
entrance where intense cooling takes place, the radi- 
ative heat loss begins to be reserved, e.g. : = 0.705. 
But this is due to the fact that the medium already 
cooled down enough emits less radiative energy. ___ 

The axial variations of total Nusselt number, Nu v, 
defined in equation (7) and the ratio of  conductive 
portion to total heat flux to the pipe wall, NuC/Nu T, 
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Fig. 5. Azimuthal variation of wall total as well as conductive heat fluxes at four different axial positions. 
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Fig. 6. Streamwise variation of the total mean Nusselt number and the ratio of conductive to total wall 

heat flux. 

0 . 0 0 3  

are represented in Fig. 6. The total Nusselt number 
becomes higher for the case (b) in which the radiation 
is dominant  and has the lowest value for no radiation. 
It decreases as cooling continues. As the temperature 
difference in the denominator  of  equation (7) is 
reduced, its rate of  decrease overwhelms the decreas- 
ing rate of  heat loss. That  is why the total Nusselt 
number increases again and finally_ reaches a plateau. 

As can be seen in the plot of  NuC/Nu "r, the con- 

tribution of  radiation in the cooling is maximum for 
case (b) and minimum for case (d). In general NuC/ 
Nu T decreases as the steep temperature gradient near 
the wall region is reduced. After some distance, it 
starts to increase again since the emission of  the med- 
ium is decreased due to its low temperature. For  the 
cases of  (b) and (c), the initial contribution of  con- 
duction is less than 20% in entrance region and then 
attains 70%. The more scattering as for the case (d) 
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makes  the emitt ing energy less available. Therefore,  
the conduct ive cont r ibu t ion  is biggest. 

4. CONCLUSIONS 

Combined  conduct ive and  radiat ive heat  t ransfer  
with a given hydrodynamical ly  fully developed inner  
pipe flow has been investigated. The outer  convective 
heat  exchange with external crossflow was pre- 
described. The radiat ive t ransfer  equat ion  was 
numerical ly solved by using the discrete ordinates  
method,  of  which accuracy and  efficiency were well 
verified. Radial  and az imuthal  var ia t ions  of  radia- 
t ion were taken into account.  

By performing the parametr ic  study using different 
values of  such parameters  as conduct ion- to- radia t ion  
parameter ,  optical radius, and scattering albedo, the 
results show tha t  the internal  medium is more  
efficiently being cooled down when the radia t ion  mode  
becomes predominant .  In o ther  words,  the larger 
optical radius or the smaller conduct ion- to- rad ia t ion  
parameter  makes  the medium a more  efficient emitter. 
And  thus, the medium tempera ture  is lowered faster. 
Even if  the initial radiat ive con t r ibu t ion  is higher, its 
role is diminished after all since the medium tem- 
perature  decreases along downstream.  Consequently,  
initially the more  radiatively active medium is being 
cooled down more efficiently than  otherwise. 
However,  as the medium tempera ture  is lowered, the 
conduct ion  comes to play a more significant role. 
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